Unfolding WMMSE Using Graph Neural Networks for Efficient Power Allocation
نویسندگان
چکیده
We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we depart from classical purely model-based approaches and propose hybrid method that retains key modeling elements conjunction with data-driven components. More precisely, put forth neural network architecture inspired by algorithmic unfolding iterative weighted minimum mean squared error (WMMSE) method, denote unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph networks (GNNs), where time-varying underlying graphs given fading interference coefficients These GNNs trained through gradient descent approach based on multiple instances problem. show proposed is permutation equivariant, thus facilitating generalizability across topologies. Comprehensive numerical experiments illustrate performance attained along its robustness to hyper-parameter selection unseen scenarios such as different densities sizes.
منابع مشابه
Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
efficient parameters selection for cntfet modelling using artificial neural networks
in this article different types of artificial neural networks (ann) were used for cntfet (carbon nanotube transistors) simulation. cntfet is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. in determining the accurate output drain current of cntfet, time lapsed and accuracy of different simulation methods were compared. the training data for...
متن کاملPANN: Power Allocation via Neural Networks
Exascale architecture computers will be limited not only by hardware but also by power consumption. In these bounded power situations, a system can deliver better results by overprovisioning – having more hardware than can be fully powered. Overprovisioned systems require power to be an integral part of any scheduling algorithm. This paper introduces a system called PANN that uses neural networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Wireless Communications
سال: 2021
ISSN: ['1536-1276', '1558-2248']
DOI: https://doi.org/10.1109/twc.2021.3071480